
Operating System Discovery Using Answer Set Programming

François Gagnon, Ph.D Student, Carleton University
fgagnon@sce.carleton.ca

The goal of operating system (OS) discovery is to learn which OS is running
on a remote computer by looking at differences in the TCP/IP stack imple-
mentation of different vendors. There are two main strategies for OS discovery:
passive, where deductions are made by looking at regular communications be-
tween computers, and active, where stimuli are sent to the target to see how
it reacts in specific (often non-standard) situations. Each technique has its ad-
vantages as well as its drawbacks. The work described here studies how logic
programming under the answer set semantics can be used to address, in a simple
and elegant way, the task of operating system discovery by logically specifying
the problem and providing solutions through automated reasoning. As a result
of using such a knowledge representation framework, it is possible to unify the
active and passive methods for OS discovery in a single hybrid approach that
has the advantages of both strategies while being much more versatile.

Current passive tools for OS discovery (OSD) have huge limitations. First,
each packet is processed individually, meaning a stimulus-response correlation
is not possible. Secondly, they are memoryless; that is, each packet is consid-
ered as being the only available information without considering the previous
deductions. This greatly limits their accuracy.

While active OSD tools are much more accurate, they also have shortcom-
ings. First, they are usually very noisy (sometimes generating several hundreds
of packets to discover the OS of a single host). Secondly, they often generate
abnormal traffic (to see how the host reacts in non-standard situations) which
may interfere with network monitoring tools such as intrusion detection systems.

To circumvent those problems, we propose to use logic programming to
implement a passive OSD module, and planning (on top of the passive module)
to implement an active module, in a hybrid approach.

1. Passive Module

The rules forming the passive module will have the following form:

L1 ∨ · · · ∨ Lk ←− Lk+1, · · · , Lm,not Lm+1, . . . ,not Ln

where each Lj is a classical literal, i.e. an atom A (in predicate logic) or its
classical negation ¬A; and not denotes weak negation. The logic programs are
evaluated using the answer set semantics.

Such rules offer an intuitive way to specify the deduction engine of the passive
module for OSD. For instance, we can express that a TCP Syn packet with the
DF bit set and a TTL of 128 must originate from a machine running Windows
2000 or Windows XP using the following rule (also called a signature):

os(Ip, win2k) ∨ os(Ip, winXP ) ←− tcp(Ip, , , , yes, syn, 128).

1



Obviously, we are not limited to a single atom on the right hand side, and
thus we can easily specify a signature using multiple packets (stimulus-response
for instance). Moreover, since the set of packets seen so far corresponds to
the facts of the logic program, the passive OSD module is naturally endowed
with a memory. These two characteristics help to improve upon the current
state-of-the-art passive tools.

Using answer set programming over more classical logic programming (e.g.
Prolog) is advantageous: sound and complete semantics, expressivity (disjunc-
tion in the head and both weak and strong negation), non-monotonicity, ability
to do planning, etc. Yet, a major concern when using such an expressive lan-
guage could be the time complexity. However, with careful management of the
facts1 it is possible to avoid most of the combinatorial explosion associated with
the answer set semantics.

2. Active Module

Even though the use of logic programming allows to enhance significantly the
accuracy of passive OSD tools, there is still a fundamental limitation: passive
means waiting for the facts to come in. An active module could be of great help
in some situations. The idea here is to use the deductions made by the passive
module (discard some OS) and then generate a sequence of tests to actively
gather the missing information. To avoid the drawbacks of usual active OSD
tools, planning is used to ensure that only relevant tests will be executed and
to avoid, as much as possible, performing tests that generate abnormal traffic.

The initial state describes the set of current possible OS (some may have
been discarded due to passive deductions). The actions are the available active
tests. The action effects encode the way an active test will partition the set of
all OS depending on the test result (e.g. Windows hosts react like this, Linux
hosts reacts like that, etc.). The goal is a state where only one given OS remains
possible2. The planning task is thus to find “the best” sequence of tests to go
from the initial state to the goal state.

3. Results

Early experiments with a prototype for the passive module show extremely
promising results. Even at an early stage, the prototype clearly outperforms
state of the art passive OSD tools in terms of accuracy.

1We keep one set of facts for each host and we use a mechanism to eliminate facts while
keeping the knowledge they convey.

2We are currently working on encoding other goals.

2


